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sure can ultimately degrade disclosure quality. I develop a communication model in which an

investor with limited information-processing capabilities relies on an algorithm to parse a man-

ager’s report. Two opposing forces emerge. Higher algorithmic accuracy enables the investor

to extract information more precisely, but it also increases the incentive for reverse-engineering

the algorithm, prompting managers to tailor their language strategically. The interaction of these

forces yields a unimodal relationship: communication improves with accuracy up to a threshold,

beyond which excessive tailoring reduces informativeness. Using a panel of U.S. conference-call

transcripts (2007-2024), I examine the market response to textual surprise. The empirical evidence

aligns with my model’s prediction: with the advent of Large Language Models and Generative AI

informativeness of corporate disclosure declined. My results highlight a previously overlooked

feedback loop: when algorithms are employed by both investors and managers, “better” technol-

ogy can ultimately harm disclosure quality.
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1 Introduction

Over the past decade, algorithms have migrated from hedge-fund back offices to mainstream

asset management, sell-side research, and even retail trading platforms (Bartram, Branke, and Mo-

tahari (2020), BlackRock (2024), and Reuters (2024))1. Machine learning models now outperform

humans in stock return prediction and portfolio selection (Rossi and Utkus (2020), Van Binsber-

gen, Han, and Lopez-Lira (2023), and Cao, Jiang, Wang, et al. (2024)); sentiment classification al-

gorithms have achieved human-level accuracy and are employed to generate profitable strategies

(Ke, Kelly, and Xiu (2019) and Loughran and McDonald (2020)); and advanced detection models

have become leading tools for uncovering financial fraud (Bao et al. (2020) and Bertomeu et al.

(2021)). As a result, algorithmic trading is now estimated to accounts for more than 60% of U.S.

equity volume.2

A large empirical literature documents this algorithmic supremacy, with the implicit premise

of monotonicity: as algorithms become more accurate, capital markets should become better in-

formed and more efficient. This view, however, overlooks an important equilibrium consequence.

As investors increasingly rely on algorithms to interpret corporate disclosures, managers have

growing incentives to tailor their language and exploit algorithmic predictability. In practice, this

adaptation, or tailoring, involves choosing words and phrases to take advantage of known patterns

in algorithmic classification. Tailoring means making lexical choices to influence an algorithm’s

output. For example:

“Smartphone revenue for the quarter was $77.5 million on shipments of 330,000 units, a decline with

respect to our November quarter revenue of $171.0 million and shipments of 556,000 units.”

A simple word-dictionary algorithm would classify this sentence as negative solely due to “de-

cline”. A minor rewrite, however, can shift the classification without altering the facts:

“Smartphone revenue for the quarter was $77.5 million on shipments of 330,000 units versus smartphone

revenue of $171.0 million and shipments of 556,000 units in our November quarter.”

1According to an AI talent report by Evident, 40% of hiring within the banking industry from October 2022 to March
2023 were for AI-related job functions.

2Goldman Sachs Global Marco Research
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Here, replacing “decline” with “versus” renders the sentence neutral under the same algorithm,

even though the underlying message is unchanged.

More sophisticated models such as ChatGPT or Claude are not as easily misled by a single

word substitution. Yet these tools can themselves be used strategically. Rather than simply avoid-

ing negative words, managers can use LLMs to reframe disclosures more positively. The NIRI

2023 Fall Report documents investor relations departments prompting models with requests such

as:

“What specific recommended language changes would you have for the neutral sentiment expressed in

pages 2 through 5 in order to make it more positive? Identify the original neutral language and then your

corresponding recommendation.”

Applied to the earlier example, prompting ChatGPT yields:

“Smartphone revenue for the quarter reached $77.5 million on shipments of 330,000 units, following a

strong November quarter with $171.0 million in revenue and 556,000 units shipped.”

Factually equivalent, this version would likely be classified as positive even by a Large Language

Model (Can Turetken and Leippold (2024)). Thus, the same tools that improve the consumption

of disclosure also enable its strategic production.

This example illustrates the mechanism at the heart of this paper: algorithmic advances boost

investors’ ability to process complex text but also create new incentives for manipulation. The very

models designed to enhance precision become targets of strategic tailoring. Whether disclosure

informativeness rises or falls with better technology depends on which force dominates: efficiency

gains from improved processing, or losses from increased managerial obfuscation. This ambiguity

motivates the central question of the paper: does technological progress ultimately strengthen or

weaken the informational role of corporate disclosure? And more specifically, has the advent

of Large Language Models (LLMs) and generative AI (GenAI) improved or worsen corporate

communication?

To formalize this tradeoff, I develop a simple model of disclosure under limited investor at-

tention (see Blankespoor, deHaan, and Marinovic (2020) for a review of processing costs and dis-

closure). In the model, a manager communicates with an investor who relies on an algorithm
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to extract information from the report. The model captures a unique disclosure environment in

which managers can write statements that are factually true yet strategically phrased to mislead

an algorithm, though not a human reader. This requires bridging two strands of theory: disclosure

models, where messages must be partially truthful, and cheap-talk models, where messages are

unconstrained.

In the model, managers decide whether to invest in becoming tech-savvy, or write a tech-naive

report. The tech-savvy manager buys her way into cheap talk communication, while the tech-

naive managers are limited to truthful communication. Since managers that tailor to algorithm

are mimicking good news, when investor use a more accurate algorithm, negative news are more

likely to be truthful, and therefore entails lower prices. The contrary is not true for positive news.

In fact, since better technology should make good report less likely to be misinterpreted, it widens

the gap between the price assigned to good and bad news, making tailoring more appealing. In

equilibrium, greater algorithmic accuracy improves the investor’s ability to process text, but it also

makes the algorithm itself a target of strategic tailoring. Informativeness therefore follows a non-

linear path: it initially rises with algorithmic accuracy, but beyond a threshold, excess tailoring by

managers erodes the gains from more precise classification.

This mechanism is particularly salient in the setting of accounting and narrative disclosure,

where language is inherently malleable. Recent evidence shows that managers adapt to machine

readers by embedding machine-readable tags (e.g., XBRL), avoiding accounting treatments that

trigger fraud alerts, and rephrasing negative content to misdirect sentiment models (Allee, DeAn-

gelis, and Moon Jr (2018), Cao, Jiang, Yang, et al. (2023), and Cao, Liang, and Moon (2023)). Mod-

ern disclosure is written not only for human investors, but increasingly for algorithms and by

algorithms (Blankespoor, deHaan, and Li (2024)), making it a natural laboratory for studying the

consequences of algorithmic advancements.

The model yields a sharp prediction. Informativeness should decline following the introduc-

tion of large language models (LLMs), as their human-level sophistication amplifies incentives for

strategic reframing. By contrast, earlier technologies such as dictionary-based sentiment models

should exhibit the opposite pattern: informativeness increases since the technology is less influ-

ential in price formation, and therefore the incentive to tailor for the technology is not as strong.

Therefore, the model predicts different outcomes depending on the level of technological sophis-
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tication, providing both a primary test (LLMs) and a natural validation exercise (dictionary-based

technology).

I examine this prediction in the setting of earnings conference calls, which include both a nar-

rative, prepared disclosure and real-time Q&A portion. My primary focus is the release of GPT-

3-class models in November 2022, which represents a salient, plausibly exogenous shock to the

accuracy of natural language processing (NLP). Technological progress in this domain is cumula-

tive and directional: successive innovations tend to deliver performance improvements.3 I there-

fore treat the diffusion of LLMs as a technological shock that materially improves the accuracy of

machine reading.

A first empirical challenge is measuring textual disclosure informativeness. To do that, I in-

troduce the absolute textual response coefficient (TRC), which quantifies the sensitivity of absolute

returns to textual surprise, in the spirit of the earnings response coefficient (ERC, Ball and Brown

(1968), Beaver (1968), Kormendi and Lipe (1987), Collins and Kothari (1989), and Easton and Zmi-

jewski (1989) and see Kothari (2001) and Dechow, Ge, and Schrand (2010) for reviews). Because

textual expectations are not directly observable, I construct a measure of standardized textual sur-

prise (SUT) as the component of textual dissimilarity between a firm’s current call and its prior

four calls, adjusted for length and contemporaneous events such as management guidance, 8K

issuance and macro news. The idea mirrors the familiar ERC setting: just as earnings surprise

captures unexpected performance and the earnings response coefficient (ERC) measures how mar-

kets react to it, textual surprise captures unexpected disclosure content and the textual response

coefficient (TRC) measures the market’s reaction. In this way, I can directly trace how the infor-

mativeness of disclosures changes around the ChatGPT shock.

My model prediction relies on the assumption of managerial tailoring for the algorithm. I

validate this channel by constructing a tailorability index measuring the extent to which disclo-

sures are phrased to evade the prevailing state-of-the-art algorithm. For Large Language Mod-

els (LLMs), the index leverages their limitations in numerical and comparative reasoning (Can

Turetken and Leippold (2024)), calculated as the fraction of sentences containing neutral compar-

ative statements (e.g., “compared to,” “relative to”) but lacking explicit directional negatives (e.g.,

3Frankel, Jennings, and Lee (2022) find that machine-learning approaches outperform dictionary-based routines in
sentiment detection.
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“decline,” “decrease”). Importantly, I exploit the structure of earnings calls: prepared speeches,

written in advance, are more suitable for tailoring, while the Q&A segment, driven by analysts,

provides a natural control group.4 This within firm-year design enables separation of strategic

adaptation from baseline linguistic drift. I find that tailorability increases in prepared speeches

after the release of ChatGPT-3.

Having validated the tailoring channel, I test the model’s core prediction. I find that following

the release of ChatGPT, the TRC declines. The simultaneous increase in tailorability and decline

in textual informativeness suggest that the success of LLMs in parsing text creates new incen-

tives for obfuscation, and that improved technology can reduce the informativeness of corporate

communication.

I provide two sets of robustness tests. First, since tailoring involves an iterated process of writ-

ing and assessing the algorithmic evaluation to find the best version to communicate the same

information, its effect should be concentrated in prepared remarks, that is drafted days in ad-

vance, rather than the Q&A, which is analyst-driven. I exploit the internal structure of conference

calls, and re-estimate the TRC separately for these two components. I compare changes in market

response to presenter speech before and after the release of ChatGPT-3 and use a “control” the

market response to the Q&A section.5 Consistent with the first test, I find that textual informative-

ness decreases for the presenter speech relative to the Q&A portion of the call after ChatGPT-3 is

released.

I provide a second identification strategy to confer validity to the ChatGPT results by leverag-

ing the functional form6 of informativeness arising from my model. The theory predicts opposite

effects at different levels of algorithmic accuracy: when accuracy is low, new tools should increase

disclosure informativeness. To capture this setting, I turn to the earlier and less sophisticated

Loughran and McDonald (2011) (LM) dictionary. My TRC test shows that informativeness rises

after the release of the LM algorithm, reflecting that the tool enhanced investors’ ability to parse

tone without being sophisticated enough to trigger extensive managerial tailoring.

My theory predicts that the uni-modal pattern of informativeness is to be found exclusively in

4Bushee, Gow, and Taylor (2018) provide a similar argument for managerial obfuscation.
5A key caveat is that the Stable Unit Treatment Value Assumption (SUTVA) likely do not hold here. The market

reaction to the prepared remarks and the Q&A is jointly determined, so I cannot cleanly separate their effects.
6The functional form of a given relation can work as identification strategy, since omitted variables or endogeneity

are unlikely to produce the observed shape (Samuels, Taylor, and Verrecchia (2021))
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positive news. The informativeness of negative news is always increasing in algorithmic accuracy.

I split conference calls based on the sign of the surprise. I find that after the introduction of Chat-

GPT the TRC increases for transcripts of calls following negative earnings surprise, but decreases

for transcripts of calls following positive surprises.

Taken together, these findings suggest that technological innovation, while improving in-

vestors’ ability to process information, simultaneously strengthens managerial incentives to tailor

disclosures. The net effect of these countervailing forces implies that advances in NLP can inad-

vertently reduce disclosure informativeness.

This paper contributes to several strands of literature. First, it extends the literature on strate-

gic textual disclosure and obfuscation in financial reporting (Li (2008), Larcker and Zakolyukina

(2012), Huang, Teoh, and Zhang (2014), Allee and DeAngelis (2015), Lee (2016), and Bushee, Gow,

and Taylor (2018)) to a modern setting in which algorithms rather than humans increasingly in-

terpret disclosures. Building on Cao, Liang, and Moon (2023), who first document positification

in mandatory filings toward earlier algorithms (word dictionaries and BERT technology), I extend

this phenomenon to conference calls and to LLMs. However, whereas prior studies establish par-

tial equilibrium effects, showing either that algorithms reduce processing costs or that managers

tailor disclosures strategically, this paper is to my knowledge the first to examine the general

equilibrium question, whether communication quality ultimately improved or worsened. My

work complements recent work on artificial intelligence and disclosure (Cao, Jiang, Yang, et al.

(2023) and Blankespoor, deHaan, and Li (2024)) by emphasizing how algorithm design reshapes

the strategic environment in which managers operate.

Second, it contributes to the disclosure theory (see Verrecchia (2001) and Stocken et al. (2013)

for reviews) by introducing a simple model in which informativeness displays a non-monotonic

(unimodal) relationship with technological advancement, not due to noise or attention, but due to

changes in processing cost (Blankespoor, deHaan, and Marinovic (2020)) that the receiver faces.

This offers a novel rationale relative to prior work of Fang, Huang, and Wang (2017) and Samuels,

Taylor, and Verrecchia (2021) that show uni-modal pattern in informativeness. My model shares

the result of Frankel and Kartik (2019), that manipulation is more pronounced when payoffs for

positive messages are higher. While they have an exogenous stakes parameter that determines the

payoffs for positive messages, my model has processing noise determine the delta between the
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payoff for positive and negative news, and therefore determining the incentives to manipulate.

Third, I build on the classical ERC framework, and propose a refined methodology to proxy for

informativeness of the textual disclosure. While the idea of looking at informativeness of textual

disclosure is not new (Kothari, Li, and Short (2009), Brown and Tucker (2011), Price et al. (2012),

and Frankel, Jennings, and Lee (2017)), I use the textual similarity as the base step to construct

textual surprise, and propose to control for other informational events to better estimate SUT and

obtain the absolute textual response coefficient (TRC), which may be useful in other applications.

Finally, the paper speaks to the literature on earnings conference calls (Tasker (1997), Frankel,

Johnson, and Skinner (1999), Matsumoto, Pronk, and Roelofsen (2011), Allee and DeAngelis (2015),

and Gow, Larcker, and Zakolyukina (2021)) by quantifying the relative informativeness of pre-

pared remarks and Q&A segments and tracing how these dynamics evolve over time.

The remainder of the paper is organized as follows. Section 2 presents the theoretical model

and develops testable predictions. Section 3 describes the data and the construction of empirical

measures. Section 4 presents the main results. Section 5 discusses extensions and robustness.

Section 6 concludes.

2 Hypothesis Development

To formalize this tradeoff, I develop a simple model of disclosure in which investors cannot

perfectly process all the information they receive. Instead, they rely on an algorithm that ex-

tracts signals from managers’ reports. The algorithm is valuable because it allows investors to

process large volumes of disclosure at low cost, but it is not flawless: it sometimes misclassifies re-

ports, with the frequency of mistakes depending on the accuracy of the technology. In the model,

managers also have access to the technology and can exploit it by tailoring their reports to the

algorithm. In practice, this means rewriting a report until it conveys the same underlying facts

but is interpreted more favorably by the algorithm, even if a human reader would not see any

difference.7 This implies that a manager who has invested in learning the technology, can keep

rewriting until she finds a version the algorithm classifies favorably. Appendix B contains the full

7For example, “Sampo Bank’s market share of lending was 13.6%, down from 14.4% in Q1 2008” is factually equiva-
lent to “Compared with 14.4% in Q1 2008, Sampo Bank’s current lending market share is 13.6%.” Yet, a financial-specific
generative AI algorithm, FinGPT, classifies the first as negative and the second as neutral.
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model derivation.

2.1 The Model

My model builds on the disclosure framework of Rappoport (2020) and connects several strands

of the information economics literature. First, following Krishna and Morgan (2004) and Blume,

Board, and Kawamura (2007), it shows how stochastic message reception can affect communica-

tion. Second, it extends the literature on disclosure under agency frictions (Verrecchia 2001) by

introducing algorithmic parsing as a new channel through which managers transmit and poten-

tially manipulate information. Third, similar to Frankel and Kartik (2019), Samuels, Taylor, and

Verrecchia (2021), and Fang, Huang, and Wang (2017), the model links informational stakes to

manipulation incentives: as algorithms become more precise, the payoff to tailoring increases,

amplifying strategic distortion.

2.1.1 Setup

A manager (M) communicates with an investor (I) who relies on an algorithm to process a

corporate report. Nature draws three independent variables: the firm’s fundamental news i ∈

{1,−1} with equal probability, the algorithm’s processing outcome j ∈ {1,−1} with prior Pr(j =

1) = 1 − κ and Pr(j = −1) = κ, and a private tailoring cost c ∼ U[0, 2]. The parameter κ captures

the algorithm’s error rate: higher κ corresponds to lower accuracy.

After observing (i, c), the manager decides whether to invest in learning how the algorithm

works at cost c. If she invests, she can craft a report that guarantees the interpretation m = 1. If

she does not invest, she reports truthfully, submitting i to the investor. In this case, the algorithm

processes the report with outcome j, and the investor observes m = i × j. When j = −1, which

occurs with probability κ, the truthful report is misclassified.

Not all managers are equally willing or able to engage in this kind of tailoring. I capture

this heterogeneity through the cost of tailoring c, which is assumed to be uniformly distributed

between zero and 2.8 For some managers the cost may be small, reflecting an ability to easily learn

and deploy the technology. For others it may be high, either because their news is so negative that

8The maximum cost is assumed large enough that a manager facing the maximum cost and negative news is never
willing to tailor.
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“positification” is infeasible, or because of reputational and legal risks.9

Managers will choose the costly tailoring action only if it yields a higher expected payoff than

reporting truthfully. A tailored report is designed with knowledge of the algorithm, so its outcome

is anticipated and guaranteed to be classified as good news. A truthful report, by contrast, is sub-

ject to the algorithm’s processing step: the accuracy of the technology determines the likelihood

that it is classified correctly or incorrectly. Among managers facing different costs but observing

the same news, there will be a pivotal manager who is indifferent between tailoring and not tai-

loring. Any manager with the same news but a lower cost will tailor, while any manager with a

higher cost will not. This creates an equilibrium with distinct pools for each type of news. While

it is intuitive that managers with bad news will want to tailor, the choice is not limited to them.

Managers with good news may also tailor, since tailoring guarantees a positive classification while

truth-telling leaves a risk of being misclassified as bad. As expected, however, the fraction of man-

agers willing to tailor is always higher among those observing negative news than among those

observing positive news.

The investor observes m and sets a price p. The manager seeks to maximize UM(p) = p, while

the investor minimizes quadratic loss U I(p, i) = −(p − i)2. Because the tailoring cost c is private

information, investors form conjectures about how many managers with good or bad news will

choose to tailor, and they set prices for good and bad reports accordingly.

2.1.2 Equilibrium

The price of a good report must reflect that it can be submitted by four types of managers:

good-news managers who tailor, good-news managers who do not tailor and are correctly classi-

fied as positive, bad-news managers who tailor, and bad-news managers who do not tailor but are

misclassified as positive. By contrast, a negative report can only come from managers who do not

tailor. This pool10 is made up of truthful bad-news managers correctly classified by the algorithm

and truthful good-news managers misclassified as bad.

In equilibrium, investors’ conjectures are confirmed: managers’ choices validate their expecta-

9The cost can also represent differences in awareness of the tailoring option itself, with managers ordered by their
likelihood of being aware, and awareness depending on how profitable tailoring is. For example, an intermediary may
sell the tailoring service, and its market share will be proportional to the benefit of tailoring.

10This is not a fully separating equilibrium, since both types can appear in the good-report pool, but rather a cutoff
equilibrium with distinct pools defined by tailoring choices.
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tions. The fixed point problem delivers a unique equilibrium with two prices, one for the good re-

port and one for the bad report, and with two threshold costs that determine which managers tai-

lor. There exists a unique perfect Bayesian equilibrium in pure strategies characterized by thresh-

old costs c∗1(κ) for good-news managers and c∗−1(κ) for bad-news managers, and prices p∗(1) for

positive reports and p∗(−1) for negative reports. One cutoff applies to bad-news managers, below

which they prefer to tailor and appear as good. The other (smaller) cutoff applies to good-news

managers, below which they also find it worthwhile to tailor: c∗−1(κ) > c∗1(κ).

The equilibrium masses of each type are: good-news managers who tailor (mass 1
2 ·

c∗1
2 ), good-

news managers who report truthfully and are correctly classified (mass 1
2 · (1 −

c∗1
2 ) · (1 − κ)), bad-

news managers who tailor (mass 1
2 ·

c∗−1
2 ), bad-news managers who report truthfully but are mis-

classified as positive (mass 1
2 · (1 − c∗−1

2 ) · κ), bad-news managers who report truthfully and are

correctly classified (mass 1
2 · (1 − c∗−1

2 ) · (1 − κ)), and good-news managers who report truthfully

but are misclassified as negative (mass 1
2 · (1 −

c∗1
2 ) · κ).

Equilibrium prices satisfy rational expectations: given the tailoring thresholds, investors price

each report based on its average quality using Bayes’ rule, and given these prices, managers op-

timally choose whether to tailor by comparing the expected benefit to the cost c. The resulting

fixed-point system yields unique values for c∗1 , c∗−1, p∗(1), and p∗(−1).

2.1.3 Comparative Statics

Once optimal prices and tailoring behavior are defined, I can calculate the amount of infor-

mation lost due to two forces: skepticism induced by tailoring and misclassification caused by the

algorithm’s inaccuracy. I measure information loss as the expected squared difference between the

true value of the news and the price assigned to the report, weighted by the joint probability of the

state and the report. For good reports, this measure captures two effects: (i) bad-news managers

who truthfully report but are misclassified as good by the algorithm, and (ii) bad-news managers

who tailor and are priced as good reports. For bad reports, the measure captures good-news

managers who truthfully report but are misclassified as bad by the algorithm. In other words,

information loss measures how far prices deviate from the truth, on average. Informativeness is

the expected payoff to the investor, which equals the negative of information loss.
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Tailoring aside, when the technology improves the algorithm becomes more accurate, and

reports are less likely to be misclassified. Clearer signals widen the gap between the price of a good

report and the price of a bad report, which in turn makes tailoring more profitable. Importantly,

the effect of accuracy on prices is not symmetric across good and bad reports.

Because bad reports are sent only by managers who do not tailor, their price reflects a mix of

two types: bad-news managers who report truthfully and are correctly classified, and good-news

managers who report truthfully but are misclassified as bad. As accuracy improves, misclassifi-

cation becomes less frequent. The pool of non-tailoring managers therefore shifts toward a larger

share of true bad news and a smaller share of misclassified good news. The price for negative

reports, p∗(−1), increases monotonically with accuracy (i.e., decreases monotonically in κ). Since

no tailoring occurs in the negative pool, this compositional improvement translates directly into

higher informativeness for negative reports.

The dynamics are different, however, for good reports. Good reports are sent by all managers

who tailor, as well as by truthful managers whose good (bad) news is correctly (incorrectly) clas-

sified by the algorithm. As the technology becomes more accurate, the composition of truthful

reporters shifts in the same way as for bad reports: the pool of good reports contains a higher

fraction of true positives and a lower fraction of misclassified negatives.

The effect of accuracy on tailoring, however, changes this dynamic. When the technology is

not very accurate, the signal extracted by the algorithm does not move prices much, so tailoring is

not very profitable. In this region, a marginal increase in accuracy raises the price of good reports,

just as it improves the informativeness of bad reports. By contrast, when the technology is already

very accurate, the algorithm’s signal plays a central role in pricing. Further improvements then

encourage more tailoring, which offsets the gains from better classification of truthful managers.

In this region, higher accuracy can actually lower the price of good reports.

Taken together, these forces generate a hump-shaped relation between the price of a good

report and the accuracy of the algorithm. The price for good reports, p∗(1), exhibits an inverted-U

relationship with accuracy: it increases in accuracy (decreases in κ) at low accuracy levels, and

decreases in accuracy (increases in κ) at high accuracy levels. Overall informativeness inherits this

hump-shaped pattern, first rising then falling with accuracy.
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2.2 Empirical Predictions

The model’s simulated comparative statics generate testable predictions about how disclosure

informativeness responds to improvements in algorithmic technology. I organize these predic-

tions around two mechanisms: tailoring behavior and informativeness dynamics.

2.2.1 Validating the Tailoring Mechanism

The model’s logic rests on the assumption that managers actively tailor their reports to exploit

algorithmic weaknesses. Before testing the main predictions, I validate this channel empirically:

Prediction 2.2.1 (H0). Following the release of an algorithm with sentiment detection capa-

bilities, textual disclosure will shift toward language that exploits the algorithm’s weaknesses

to obtain more positive inferences.

2.2.2 Main Predictions: Inverted-U Informativeness

Having established that tailoring occurs, I turn to the model’s central implications for disclo-

sure informativeness. The model predicts that report informativeness follows a hump-shaped

path as algorithm accuracy increases. At low accuracy levels, better algorithms improve infor-

mativeness by reducing misclassification. At high accuracy levels, better algorithms reduce infor-

mativeness by intensifying strategic tailoring. Since I focus on the introduction of large language

models (LLMs), a high-accuracy technology, my first main prediction concerns the downward-

sloping portion of the inverted-U:

Prediction 2.2.2 (H1). The informativeness of textual corporate communication decreased

following the release of LLM technology.

The same theoretical result suggests the opposite pattern for less accurate technologies. When

sentiment dictionaries such as the Loughran and McDonald (2011) lexicon were first introduced,

algorithmic accuracy was relatively low, placing firms on the upward-sloping portion of the inverted-

U. This motivates my second prediction:
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Prediction 2.2.3 (H2). The informativeness of textual corporate communication increased fol-

lowing the release of the Loughran and McDonald (2011) sentiment dictionary.

2.2.3 News-Type Asymmetry

The model’s comparative statics also reveal an asymmetry by news type. The informativeness

of negative reports always increases with accuracy, while the informativeness of positive reports

can decrease at high accuracy levels. This asymmetry stems from the fact that negative reports

are sent only by non-tailoring managers, whose pool becomes purer as accuracy rises. Positive

reports, by contrast, attract tailoring managers, whose presence degrades informativeness when

accuracy is high. This leads to my third prediction:

Prediction 2.2.4 (H3). The informativeness of textual corporate communication decreased for

positive news and increased for negative news following the release of LLM technology.

Finally, because the model builds on the assumption that investors face processing constraints,

the predicted dynamics should be most pronounced in settings where algorithmic parsing is valu-

able, namely, text-rich disclosures that are costly to process manually. Having developed the

theoretical foundation, I now turn to the empirical analysis to test whether the data exhibit these

predicted patterns.

3 Data

3.1 Sample

I start with the universe of earnings conference call transcripts from Capital IQ, totaling 231,687

unique transcripts for firms listed on the NYSE and NASDAQ. For every conference call, I collect

the latest version of the transcript.11 Conference calls structure is typically a Prepared (or Presen-

ter) Speech led by executives, followed by a Q&A where security analysts get to ask questions.

Capital IQ tags each conference portion (presenter speech, question, answer, or operator) and

speaker (exec, analysts, operator). I drop calls without both a tagged Presenter Speech and a Q&A

11Note that the transcript creation date and time do not coincide with the event date and time. I use creation times-
tamps to retrieve the most recent transcripts, which should coincide with the most accurate version.
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section. I require for every company to host at least four conference calls in the previous year and

a half. This drops the sample to 187,557.

I collect from I/B/E/S “street” measures of earnings and analysts estimates. I compute ana-

lysts’ expectations as the median of latest individual analysts forecasts issued within the 90 days

prior to the earnings announcement date (EAD). If management issues guidance within such win-

dow, I restrict the median estimates to only forecasts between the latest guidance and the EAD.

Following Payne and Thomas 2003, I use unadjusted values, and apply CRSP adjustment factor to

put both the forecast and the actual values on comparable per-share basis, and avoid look-ahead

bias12 while four digits precision in computing the median estimate13. I find I/B/E/S data from

187,557 unique transcripts.

Following Anilowski, Feng, and Skinner (2007), I also collect management guidance that pre-

cedes the earnings announcement and conference call. I/B/E/S stores guidance for fourteen mea-

sures (capex, dividend-per-share, EBITDA, EBITDA-per-share, funds from operations-per-share,

fully reported earnings-per-share, gross margin, net income, operating profits, pre-tax income,

ROA, ROE, and sales). Guidance can be a point estimate or range guidance, and differ on forecast

period (quarter or yearly). For every event, I compute total guidance, fraction of range guidance,

whether EPS guidance is provided, what fraction of guidance is EPS (or sales) guidance, issued

between the event date and the previous 90 days. I set the guidance metrics to zero if I can find a

company in I/B/E/S but there is no guidance data in the Guidance Detail History database, and to

missing otherwise. The dataset size drops to 174,288 observations with I/B/E/S EPS information,

but a smaller fraction (55%) has also guidance information.

Next, I construct Cumulative Abnormal returns using CRSP daily stock data. The daily abnor-

mal return is the difference between daily stock return and the CRSP market return over the same

period. I compute Cumulative Abnormal Return metrics, CAREA(−1, 1), as the sum of three daily

abnormal returns centered at the earnings announcement date; and CARCC(−1, 1) centered at the

conference call date.14 I center each window on the first trading day: that is, if the event is after

hour, t = 0 is the day after the event, while if the event is before or during hours, date t = 0 is the

12Stock splits can be problematic when comparing EPS at different dates (i.e. at the announcement date vs the
estimate date). Adjusted values in I/B/E/S use recent adjustment factor.

13Pre-compute median estimates in I/B/E/S summary stats are rounded at decimal level.
14I also compute CARevent(0, 2) for robustness.
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day of the event.

I collect standard ERC controls to improve its estimate. I estimate Market Beta, and compute

Size, Market-to-Book, Leverage, and Earnings Persistence. The latter is the coefficient of the basic

earnings per share excluding extraordinary items of its lagged value, on at least three years of

data, and up to ten.

Lastly, I follow Gipper, Leuz, and Maffett (2020), and truncate the continuous financial vari-

ables in the response coefficient regressions at 1 and 99%. Since ERC estimation suffers from

the skeweness of unexpected earnings, I drop observations with earnings surprises below -1 and

greater than 1, and observations with price two days before EAD lower than 1.

Table 1 illustrates data coverage, and Table 2 the summary statistics for the main variables.

3.2 Textual Metrics

In my empirical analysis I use textual metrics to validated the tailoring channel, and to mea-

sure informativeness of the transcript of the earnings conference calls. I describe them in this

subsection.

3.2.1 Tailorability Indexes

I construct a transcript-level proxy that capture lexical choices explicitly designed to exploit

weaknesses in Large Language Models (LLMs).

LLM–based tailoring. Transformer models such as GPT-3.5 have been shown to have contex-

tual “understanding” of language, but have been shown to be less adept to numerical reasoning

(Leippold (2023) and Can Turetken and Leippold (2024)). In each sentence of the transcript, I look

for (i) comparators terms (e.g., “relative to”, “compared with”) and (ii) directional negatives (e.g.,

“decrease”, “decline”). I list comparators terms and directional negatives in Panel B of Table 3.

Denote by numericalit the number of sentences containing a comparator without a directional

negative, and by comparatorit the number of sentences containing any comparator. The LLM–tailorability

index is

TailorabilityLLM
it =

numericalit

comparatorit
,
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High values indicate that managers rewrite potentially negative comparisons in linguistically neu-

tral terms that LLMs underweight.

Dictionary–based tailoring. Cao, Jiang, Yang, et al. (2023) show positification in annual and

quarterly reports catered to Loughran and McDonald (2011) dictionary, which is an older, less

accurate algorithm, that was commonly used in the finance literature before the introduction of

LLMs. They show that financial negative words (listed in the dictionary) become more infrequent

after the release of the dictionary, while negative words in general language do not show this

pattern. I build an index that tries to capture substitutability between listed and unlisted words

in earnings conference calls. I start from the list of 2,303 negative words according to the LM

vocabulary, excluding the tokens question(s). I call this set of tokens NLM. For each word, I collect

all possible synonyms from WordNet, a large lexical database of English developed by Princeton

University. In order to restrict the list of synonyms to words that also have a negative connotation,

I keep only synonyms deemed negative by the Harvard dictionary. This yields a vocabulary of

1,438 synonymy with negative connotation, that I called SLM.

For each transcript I count

flaggedit = #{tokens ∈ NLM}, unflaggedit = #{tokens ∈ SLM \ NLM}.

The LM–tailorability index is the share of negative language that evades the dictionary:

TailorabilityLM
it =

unflaggedit
flaggedit + unflaggedit

.

Large values indicate that managers substitute canonical LM words with semantically equivalent

but unindexed synonyms.

To both indexes I add an infinitesimal term, 10−9, to the denominator, to avoids division by

zero when no match is found. Each index is computed at the transcript level for for the entire call

and for different segments (presenter speech, Q&A, and questions only).
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3.2.2 Textual Surprise (SUT)

I propose to measure textual informativeness with an absolute Textual Response Coefficient

(TRC), analogous to the Earnings Response Coefficient (ERC), which measures how strongly mar-

kets react to textual surprise. As with the ERC, the challenge lies in identifying information set to

construct the surprise.15 I define the information set as comprising the transcript of the four prior

earnings calls; the amount, characteristics and timing of Form 8-K filings, and any management

guidance issued during the quarter leading up to the current earnings announcement; and macro

variables for the month preceding the call.

To quantify the novelty of information disclosed during the current earnings call relative to

recent disclosures, I construct a firm-specific measure that captures linguistic changes between

the transcript of the current call and those of the preceding four calls. I then regress the textual

dissimilairty on the characteristics of the disclosure process to get a measure of textual surprise.

The construction proceeds in two steps. First, to measure pure textual dissimilarity between

the earnings call and firm’s history of conference calls, I follow the approach of Brown and Tucker

(2011). The authors compute changes in 10-K language relative to the prior year; I adapt it to the

higher-frequency and dialogic nature of conference calls. For each transcript, I compute the cosine

similarity between the term-frequency–inverse-document-frequency (TF-IDF) representation of

the current call and a benchmark composed of the four most recent transcripts from the same

firm. The TF-IDF representation counts words in a given document, but discount each term by

the count in the entire corpus.16 The TF-IDF vectorizer is trained on a 20,000-transcript subsample

to ensure representative weighting of common terms in conference calls.

As in Brown and Tucker (2011), the dissimilarity score is 1 minus the similarity score. Because

longer transcripts naturally tend to exhibit greater linguistic dissimilarity, I follow Brown and

Tucker (2011) methodology and project each score onto a fifth-degree polynomial of transcript

length and use the residual as the length-adjusted abnormality metric. This metric is set up to

capture the novelty of the current transcript with respect to the prior four, by computing how

15Previous research examined the relation between the content of textual communication and capital market out-
comes (mainly Kothari, Li, and Short (2009), Brown and Tucker (2011), and Frankel, Jennings, and Lee (2017)), how my
approach differs, is that I am after the notion of surprise rather than textual dissimilarity.

16Prior to comparison, each transcript is pre-processed by lowercasing, stripping numeric and non-alphabetic char-
acters, and stemming via the Porter algorithm. I do not have to drop stopwords, as is common among simple word
counts approaches, because the TF-IDF transformation will already weight them down to zero.
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much variation the transcript “adds” to the vector space of past communication. Since my study

consider tailoring as a channel that affects investors skepticism towards the report, I used the

unsigned measure of textual dissimilarity of Brown and Tucker (2011). Kothari (2001) and Frankel,

Jennings, and Lee (2017) add the tone dimension to their analysis, which I intentionally stay away

from.

Conference calls are not the only disclosure events. In order to avoid attributing informa-

tion disclosed via different channel, or already known to the market, in the second step, I regress

the length-adjusted dissimilarity metric (i.e. the residual from the previous step) on a rich set

of controls. I include: the number and nature (whether it is EPS guidance) of guidance events,

the proximity in days to most recent 8-K filings, the complexity (measured with the Flesch Kin-

caidand index) of preceding regulatory filings in the same quarter, and prevailing macroeconomic

conditions (interest rates, inflation, and industrial production).

I then use the residual from this regression, pass it through the Min-Max transformation to get

values in [0,1], and consider this final measure the textual surprise, denoted SUT. This measure is

meant to capture variation in language that cannot be attributed to other observable information

events. I also construct an indicator variables for above-median SUT, HSUT. This binary trans-

formation serves two purposes. First, it reflects the notion, central to the model, that algorithmic

tools are especially valuable in settings with high processing costs, such as unusually complex or

novel disclosures. Second, it mitigates the influence of outliers and measurement noise inherent

in high-dimensional textual similarity metrics. The resulting indicator, HSUT, flags transcripts

where textual news is unusually high relative to a firm’s recent history.

3.2.3 TRC

I validate my measure with a classical abnormal return test. Since conference calls have been

found to be relevant informational events (Frankel, Johnson, and Skinner (1999) and Matsumoto,

Pronk, and Roelofsen (2011)), if the measure I construct capturs relevant information, I expect ab-

solute cumulative abnormal returns (ACAR) around the earnings conference calls to be positively

associated with it. I use absolute cumulative abnormal returns since my SUT measure cannot

distinguish positive from negative news. An important caveat is that my measure is additive in
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reported news, irrespective of their sign. This can hinder the relation with ACAR. As a purely il-

lustrative example, assume that call i reports three positive news, and a call j reports two negative

and one positive news, the SUT could be very close in value for call i and j, but ACAR for i may

be larger than j.

Since textual information is to be consumed jointly with the accounting numbers, I also in-

teract the absolute earning surprise, with the textual surprise. Then, the TRC has two compo-

nents, a pure response to textual surprise, and an interaction of the textual and earnings surprises.

Columns (1)-(3) of Table 4 shows the results without interacting earnings and textual surprise,

while Columns (4)-(6) reports the estimates of the model:

ACAR(−1, 1) = β0 + β1Abs UE + β2SUT + β3Abs UE × SUT + ε (3.1)

I find that higher textual news is associated with higher absolute returns, but the effect is

partially reversed with large surprises.

Note that while the interaction term is negative, it doesn’t reverse the positive relation between

the magnitude of the SUT and CAR; even at the 95 percentile of Abs UE value, 0.023, the implied

absolute TRC is 0.009 > 0. Similar to ERCs being larger for small earnings surprise, the TRC is

non linear in Abs UE. Textual surprise is more positively correlated with market returns when

earnings surprise is low, which can suggests substitutability between the two signals.

The coefficients are stable to the addition of classical ERC controls designed to improve the

ERC estimate: earnings loss, earnings persistence, size, market-to-book, leverage, and market

beta. I also add controls specific to the TRC that are meant to capture other information event that

can make the information embedded in the call redundant or less surprising: amount and type of

guidance, length of the transcript, and distance in days from the earnings announcement date, as

well as industry and quarter-year fixed effects.

4 Results

I start by showing empirical evidence of the tailoring channel 2.2.1, then move to the main

prediction 2.2.2.
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4.1 Tailoring for the algorithm

When algorithms are used to evaluate disclosures, managers have incentive to understand

how they work, so they can write with the algorithm in mind, i.e. tailoring to the algorithm.

Sentiment-detection algorithms are among the most widely used NLP techniques in finance. Al-

though they can identify tone with high levels of accuracy, they are not perfect. The high-dimensional

nature of language means that two differently worded sentences, despite carrying the same infor-

mation, can still receive different sentiment scores from the very same model.

To examine whether firms strategically tailor their disclosure to get more favorable algorith-

mic outcomes, I inspect words distribution before and after the release dates of two algorithms,

the Loughran and McDonald (2011) word dictionary (LM) and ChatGPT. I leverage the structure

of earnings conference calls to obtain a cleaner estimate of tailorability patterns. Tailoring is a

complex exercise and, therefore, should be most evident in the prepared remarks rather than in

the more spontaneous Q&A segment. Because analysts do not face the same reporting incentives

as managers, I treat the word distribution in analysts’ Q&A questions as a control group, while

the presenters’ prepared speech serves as the treated group.

4.1.1 Tailoring for LM

I compute the LM-tailorability measure describe Section 3.2.1, on conference calls transcripts

for the two years preceding and following the publications of LM on JF (2011). I then compare the

frequency of words that elude the word-dictionary sentiment detection algorithm in the presenter

speech and the analysts’ questions of the Q&A section, running the following regression:

Tailorabilityit = α0 + α1Postt + α2Sectionit + α3Postt × Sectionit + ε it (4.1)

The dependent variable, Tailorabilty, is a transcript-section level measure of frequency of

words that elude the algorithm. The average LM − tailorability is 0.7 in the presenter speech,

and 0.78 in the analysts’ questions of the Q&A section.

Post is an indicator taking value 1 if the call is held after January 6th, 2011, the date of the

publication of the LM paper on the Journal of Finance17. Section is also an indicator variable,

17I follow Cao, Jiang, Yang, et al. (2023) and use the publication date, rather than the first posting date, January 23rd,
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taking value 1 is the measure pertains the presenter speech, and zero if comes from the questions

of the analysts.

In my empirical analysis, the Q&A portion of the call acts as control, and the presenter speech

as the treated group. I can therefore apply quarter-year and firm fixed effects. I report the results

in Table 5. The coefficient of interest, α̂3, is 0.027 and remains positive and statistically significant

both with and without fixed effects. This estimate implies that following the publication of its

word list in the Journal of Finance, the usage of their unlisted synonyms in the prepared speech

has increased by roughly 4 percent relative to the Q&A. This is a first piece of evidence for strategic

tailoring. The usage of the synonym that escape negative tone detection increases increases after

the dictionary is made public, and the effect is concentrated among the presenter speech, which is

drafted in advanced, rather than the interactive Q&A portion.

4.1.2 Tailoring for LLMs

LLMs are robust to simple synonyms swap, but have limited numerical reasoning capacity. I

use the tailorability catered for LLMs limitations explained in Section 3.2.1. I look for sentences

that leverage the numerical reasoning limitation of LLMs, by calculating how many times com-

parative terms, like “with respect to”, “relative to”, “versus” appear in the transcripts without any

negative connotation words like “decrease”, “loss”, “decline”, etc. (the full list of terms is in Panel

B of Table 3)

The average Tailorability score is 0.82 for the presenter speech and 0.72 for analysts’ questions.

I re-estimate specification 4.1 using the release date of ChatGPT-3 (30 November 2022) as the cut-

off and restrict the sample to the two-year window on either side of that date. Table 3 shows that,

tailorability rises within Presenter Speeches relative to analysts’ questions in the two years follow-

ing the release of ChatGPT-3. Specifically, I find an additional 1 percent increase in the share of

sentences worded in a way that large language models are more likely to misinterpret.

4.2 Loss of Informativeness with the advent of LLMs

My model predicts that, as parsing technology becomes highly accurate, incentives to tailor

disclosure to please the algorithm are heightened, and net, overall informativeness of the message

2009, as the word-index didn’t gained popularity until after its publication)
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decreases. Table 3 supports the tailoring channel behind this prediction by showing that tailorabil-

ity of disclosures increased following the release of ChatGPT-3 class models. To empirically test

the prediction on overall informativeness, I compare the Textual Response Coefficient (TRC) of

conference calls before and after the ChatGPT-3 release date.

Since the model builds on a rational inattention assumption, the predicted dynamics should be

found among reports subject to higher processing costs, and therefore the effects it to be expected

among textual-rich disclosures. For this reason, I re-encode SUT into high versus low textual

surprise, and compute an indicator for above median textual surprise, (HSUT).18

I inspect changes in the absolute response coefficient of the binary transformation to textual

response before and after the release of ChatGPT-3. I run the following specification

ACAR(−1, 1) =α0 + α1HSUT + α2Abs UE + α3HSUT × Abs UE + α4Post+ (4.2)

α5HSUT × Post + α6Abs UE × Post + α7HSUT × Abs UE × Post+

ΓX + ε

The dependent variable is the absolute value of the cumulative abnormal returns on the win-

dow [−1, 1] centered on the trading day the call is held on, or the first trading day that follows the

call, if held after-hours. I use controls that are standard in the ERC literature to better estimate the

coefficient: Earnings Loss, Size, Earnings Persistence, Market-to-Book, and Market Beta. These met-

rics are deeply related to the ERC construct (Collins and Kothari (1989)). Since earnings surprises

are mostly positive, and the coefficient estimated on positive surprises is typically higher than

the one estimated on negative surprises, thus Earnings Loss captures the non-linearity in the ERC

regression. Second, Size, is a proxy for the informational environment, while Market-to-Book and

Market Beta proxy growth opportunities. Finally, Earnings Persistence that captures the stickiness

of earnings, which is associated with a higher ERC.

Additionally, I control for the the length of the transcript (Length), since longer transcripts may

be harder to process. I add three controls that measure other informational events that can the

make price already reflect information discussed in the call. I include the number of 8K issued

18The HSUT, unsurprisingly, behaves like to SUT: it is positively correlated with abnormal cumulative returns, its
interaction with the length of the transcript is positively associated with absolute CARs, and shows substitutability
with other informational events like, number of 8K, total guidance, presence of EPS guidance.
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in the quarter prior the earnings announcement, the number of guidance, and whether it was

EPS guidance. Finally, I control for the timespan between the call and other informational events.

Specifically, I control for the distance in days between the earnings announcement and the confer-

ence call19, and the distance in days between the call and the last 8K issued that quarter.

My coefficients of interest are α̂5, α̂7. Table 6 report the estimated parameters. The coefficient

α̂5 is positive, but insignificant, while the coefficient for the interaction term in the post period is

negative (α̂7 < 0) and significant a 1%.20 The estimate is robust to the inclusion of my two sets

of controls and industry or firm fixed effects. The estimates are qualitatively and quantitatively

robust if I substitute Abs UE with the decile of the absolute earnings surprise, DAbs UE.

In the period of examination, between November 2020 and November 2024, the mean absolute

cumulative abnormal return, ACAR, is 0.066, and the mean absolute earnings surprise, Abs UE,

is 0.008. Then, my estimates suggest that in the two years following the release of ChatGPT-3 class

models, for the mean absolute surprise, the market response to textual-rich disclosures decreases

by 11 to 17 basis points, corresponding to a 1.74 to 2.62% decrease in absolute cumulative abnormal

returns.

The pre-post analysis of textual informativeness in 6, jointly with the tailorability result of 3,

suggests that the textual information content of conference call might have decreased after LLMs

introduction.

5 Robustness

I provide two additional set of test. First, I leverage the structure of the conference call and

compare response to presenter speech versus Q&A portion, with the idea that tailoring will be

more concentrated into the prepared portion,21 so that the Q&A acts a “control”. The issue with

this test is that the two portions of the call are jointly consumed, possibly violating the Stable Unit

Treatment Value Assumption (SUTVA).

19Almost 80% of the observation of the calls in my sample are held the same day of the earnings announcement, and
over 99% within one day. The results are robust to restrict to earnings conference call held the same day of the earnings
announcement.

20I also substitute the indicator Post with an indicator for the years 2020, 2021, 2023, 2024. I find that the coefficient
of the interaction term in increasingly negative in the two years following the release of ChatGPT-2 models.

21Bushee, Gow, and Taylor (2018) make a similar argument for obfuscation.

23



Second, use my theory to guide identification vie functional form(Samuels, Taylor, and Verrec-

chia (2021)). The model predicts that for a less accurate algorithm, the predictions are flipped. I

inspect changes in HSUT before and after the publication of the Loughran and McDonald (2011)

word dictionary (LM), an earlier algorithm to detect financial tone. The LM is a simpler technol-

ogy, a word dictionary, and therefore much less accurate. Frankel, Jennings, and Lee (2022) and

Leippold (2023) both find that LM is outperformed in the tone detection task by machine learning

techniques in financial texts. I find empirical evidence supporting this second prediction.

Finally, the model predicts that information loss should only appear in among positive news.

Negative news is instead more informative when the algorithm improves. I inspect TRC changes

separately for positive and negative earnings surprises, and find again that my empirical analysis

support my theory.

5.1 Robustness: Presenter Speech vs Q&A

The nature of technological progress is that algorithmic performance will improve with each

successive innovation. I therefore treat the ChatGPT release as as an exogenous shock to the infor-

mation environment. One obstacle in testing whether informativeness has ultimately decrease, is

that increasing incentives to tailor apply to all firms. It is therefore difficult to create a “clean” con-

trol group of firms that were unaffected by the new technological environment. However, because

presenter speech is prepared in advanced, vetted by lawyers, and is more suited to be vetted for

algorithmic evaluation, while analysts don’t share the agency incentives of managers, they should

have no incentives to tailor their questions to the algorithms.

Estimating response coefficients separately for the presenter speech and the Q&A resembles

the work of Lipe (1986) on understanding the information contained in the components of earn-

ings. One caveat is that the response to the two components of the textual surprise of the call are

jointly determined, and therefore violate the Stable Unit Treatment Value Assumption. With this

caveat in mind, I can use the Q&A as “control” group and presenter speech as “treated” group.

Each call is then split into its two component: presenter speech and Q&A, and the HSUT is sepa-

rately computed for the two components.

I inspect the TRC of the components of the call in Appendix ??. I find that the TRC for presen-
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ter speech is lower than the TRC for Q&A when interacted with the decile of absolute earnings

surprise DAbs UE. The relation is less strong if I use absolute earnings surprises. Matsumoto,

Pronk, and Roelofsen (2011) finds that the Q&A is more informative than the presenter speech,

therefore, when running TRC-components regressions, I use deciles of absolute earnings surprises

(DAbs UE), rather than absolute earnings surprise.

I run the following specification

ACAR(−1, 1) = α0 + α1HSUT + α2DAbs UE + α3HSUT × DAbs UE + α4Section+ (5.1)

α5HSUT × Section + α6DAbs UE × Section + α7HSUT × DAbs UE × Section+

α8Post + α9HSUT × Post + α10DAbs UE × Post + α11HSUT × DAbs UE × Post+

α12Section × Post + α13HSUT × Section × Post + α14DAbs UE × Section × Post+

α15HSUT × DAbs UE × Section × Post + ΓX + ε

The coefficients of interests are α̂13 and α̂15. Table 7 reports the results of equation 5.1. In

Column (3) α̂13 = 0.0077, and α̂15 = −0.0014. Then market response to textual-rich earnings

conference calls increases for low earnings surprises (DAbs UE ≤ 5), and decreases for larger

earnings surprises (DAbs UE ≥ 6). The median DAbs UE is 6, therefore the market response to

the textual-rich presenter speech, decreases by 7 basis points, with respect to the market response

to the textual-rich Q&A, that is a 1.06% decrease in absolute cumulative abnormal returns.

Decomposing textual news into the component attributed to the prepared speech and to the

Q&A portion of the call can help understand whether the advent of LLM technology has improved

or worsen corporate communication, if we assume that response to the two sections has a com-

mon trend in absence of the technological shock. For the Q&A to be a valid control group, I have

to examine the validity of the parallel trends assumption. ChatGPT-3 is released in late Novem-

ber 2022, so I consider 2023 the first year of treatment, and 2022 the baseline. Figure 1, Panel A

and Panel B show that TRC-differences by year. Panel A looks at the coefficient for HSUT (base,

α13), and Panel B at the coefficient for DAbs UE × HSUT (interaction, α15). Both base and inter-

action coefficients are insignificant in the pre-period, which is consistent with the parallel trend
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assumption. In the post, the coefficient for the interaction term becomes negative and significant,

by 2024, two years after the release of ChatGPT-3. Since DAbs UE takes integer values from 1 to

10, the market response to HSUT decreases, for all levels of absolute earnings surprise. Thus, the

market reaction to the textual surprise in the presenter speech decreases relative to the reaction to

the textual surprise in the Q&A.

There is a caveat for this analysis. It could be that the response to the textual surprise of one

section affects the response to the other. Such spillover could bias my analysis. For this reason, I

provide a second set of tests that relies on the functional form of the model to identify the effect of

the emergence of LLMs and Generative AI on corporate disclosure.

5.2 Robustness: LM dictionary

In my second battery of robustness tests, I rely on my theory for identification. Prediction 2.2.3

states that when the baseline technology has low accuracy, improvements in accuracy are associ-

ated with higher informativeness. I propose that the introduction of the Loughran and McDonald

(2011) dictionary fits the assumption behind this prediction. This dictionary based-algorithm is

noisy proxy for financial sentiment, but has been, and still is, commonly used in the finance liter-

ature (Cao, Jiang, Yang, et al. (2023)).

In subsection 4.1.1 I validated the tailoring channel for LM-algorithm, so I can move directly to

the test of prediction 2.2.3. I replicate the design of equation 4.2, but center around the publication

of the publication date of the Loughran and McDonald (2011) paper. Table 8 reports the results.

The coefficient Post LM = 1 × Abs UE × HSUT is positive, therefore the market response to

textual-rich earnings conference calls increases after the LM dictionary is released. The mean

absolute cumulative abnormal return for the period January 2009 to January 2013 is 0.0561, and

the mean Abs UE is 0.0060. Thus, the market response to textual-rich earnings conference calls

increases absolute CAR by 15 basis points, a 2.61% increase with respect to the mean return.
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5.3 Robustness: Informativeness increases for negative news and decreases for posi-

tive news

I present one last set of results that leverage the implications of my model. Prediction 2.2.4

states that the informativeness of negative messages always increases in algorithmic accuracy,

while informativeness of positive messages decreases with high the algorithm accuracy. Recall

that my SUT measure is agnostic about the news. To investigate my last prediction, I let the

earnings surprise determine the sign of the news, run the following regression:

CAR(−1, 1) = α0 + α1SUT + α2UE + α3SUT × UE + α4Post+ (5.2)

α5SUT × Post + α6UE × Post + α7SUT × UE × Post + ΓX + ε,

where I split the sample into positive (or zero) and negative earnings surprises UE. Since the

model dynamics rely on rational inattention, I restrict my attention to transcripts of above median

length. Table 9 reports the results for both subsets of negative and positive earnings surprises.

Estimates in columns (1)-(3) indicates that after the introduction of ChatGPT, for the median

negative surprise, −0.0098, an increase of 1% in SUT, decreases the cumulative abnormal returns

by an additional 3 basis points, or 1.13% decrease in cumulative abnormal return with respect to

the mean CAR of −0.0299. Consistently with my theory, the informativeness of the textual news

disclosed in the negative message increases with algorithmic accuracy.

My estimates suggest that the opposite is true for the subsample of positive news. Estimates in

columns (4)-(6) indicates that after the introduction of ChatGPT, for the median positive surprise,

0.0044, an increase of 1% in SUT, decreases the cumulative abnormal returns by 2 basis points, or

2.66% decrease in cumulative abnormal return with respect to the mean CAR of −0.0299. Again,

consistent with the model, the informativeness of the textual news disclosed in the positive mes-

sage decreases with algorithmic accuracy.
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6 Conclusion

This paper studies how the growing reliance on algorithms to parse corporate disclosure can

have unintended consequences for disclosure quality. I develop a simple model in which investors

rely on algorithms to process managers’ reports. While greater algorithmic accuracy improves

the investor’s ability to extract information, it also raises the payoff to reverse-engineering the

algorithm, intensifying incentives for managers to tailor their language. The interaction of these

forces generates a hump-shaped pattern in disclosure informativeness.

Using a large panel of U.S. earnings conference calls from 2007 to 2024, I document evidence

consistent with this prediction. Following the release of ChatGPT-3, informativeness of textual

disclosure declined as shown by a decrease of 1.74 to 2.62% in absolute cumulative abnormal re-

turns for textual-rich disclosures. I corroborate this result, and show that the market response to

the textual information embedded in the prepared speech as declined after the release of Large

Language Models, when compared to the same trend for the market response to textual informa-

tion embedded in the Q&A portion of the call. Moreover, I leverage the prediction of my model

and find that consistent with my theory, after the publication of the Loughran–McDonald (2011)

dictionary, disclosures became more informative, as reflected in a stronger market response to

textual surprise. Finally, also show that the information loss of the textual disclosure is concen-

trated among positive news, and that as theory predicts, informativeness of negative news has

improved.

The findings highlight a feedback loop in modern disclosure: as algorithms become more so-

phisticated, they enhance information processing but simultaneously strengthen the incentives

for managers to game their classifications. The net effect is non-monotonic. In equilibrium, better

algorithms do not always lead to better disclosures.

These results contribute to the literature on disclosure and obfuscation by showing that mod-

ern tailoring strategies are aimed not at human readers but at machine interpreters. They also

extend the economics of disclosure theory, offering a novel mechanism through which technolog-

ical progress can diminish informativeness. Finally, the paper introduces new empirical measures

(tailorability indexes and the absolute textual response coefficient) that may be useful in future

research on the interplay between algorithmic readers and corporate disclosure.
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Tables

Table 1: Sample Construction and Coverage
This table presents the sample selection procedure for the full sample of conference call transcripts
obtained from Capital IQ. The sample is constructed using the universe of earnings call transcripts
from the Capital IQ between January 1, 2004 to December 31, 2024. In order to construct the main
measure, SUT, I require data regarding informational events, like management guidance type
and amount, characteristics of previous disclosure, and macro variable. I collect such information
from I/B/E/S, CRSP, WRDS SEC Analytics and FRED St. Louis. In the last step of the sample
construction, I perform truncation at 1-99% of relevant continuous variables and 2.5-97.5% of
earning surprise, as is common practice for ERC studies.

Data Source / Filter Observations Coverage

Capital IQ transcripts 231,687 100%

with Brown–Tucker measures 187,557 81%

with Presenter Speech and Q&A tagged correctly: 187,557 81%

with key I/B/E/S metrics 174,288 75%

with key CRSP metrics 173,386 75%

with key Compustat metrics 154,907 67%

with guidance metrics 104,816 45%

with 8-K metrics 96,827 42%

with readability metrics 93,207 40%

with truncation at 1-99% and clipping of UE and P(−2) 77,157 33%

Table 2: Descriptive Statistics of Key Variables
This table presents the distribution of key variables used in my analysis. All variables are defined
in Appendix A. Observations with stock price lower than $1, unexpected earnings lower than -1
and greater than 1, conference call of zero characters, and distance in days between the earnings
announcement and the earnings call greater than 90 days are dropped. Cumulative Abnormal
Returns, Size, Market-to-Book, Leverage, Market Beta, Earnings Persistence, and Brown Tucker
dissimilarity measures are truncated at 1 and 99%.

Variable N Mean SD Min Q1 Median Q3 Max

ACAR(-1,1) 77,157 0.06 0.05 0.00 0.02 0.04 0.08 0.36

Absolute UE 77,157 0.0066 0.0240 0.0000 0.0006 0.0017 0.0048 0.9342

SUT 77,157 0.35 0.09 0.00 0.29 0.33 0.39 1.00

Loss 77,157 0.26 0.44 0.00 0.00 0.00 1.00 1.00

Size 77,157 7.90 1.60 2.48 6.78 7.87 9.01 12.29

Persistence 77,157 0.34 0.48 -2.54 0.03 0.32 0.63 5.92

MTB 77,157 3.43 4.82 -33.23 1.44 2.32 3.99 66.01

Leverage 77,157 1.77 2.94 -22.50 0.65 1.21 2.17 39.32

Beta 77,157 1.13 0.42 0.03 0.85 1.10 1.39 3.13

Dist. Conf. 77,157 0.40 3.61 0.00 0.00 0.00 0.00 90.00

Len. Comp. 77,157 10.51 0.31 8.56 10.32 10.57 10.73 11.93

Tot. Guidance 77,157 18.65 22.78 1.00 5.00 12.00 24.00 506.00

EPS Guidance 77,157 0.54 0.50 0.00 0.00 1.00 1.00 1.00
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Table 3: Tailorability ChatGPT
Panel A reports regression estimates of the LLM–tailorability index for U.S. earnings-call tran-
scripts, exploiting the weaknesses documented in Leippold (2023) and Can Turetken and Leip-
pold (2024). For transcript i in quarter t I parse each sentence and detect (i) comparator expres-
sions such as relative to or versus, and (ii) directional negatives such as decrease, decline, drop. Let
numericalit denote the number of sentences that contain at least one comparator but no direc-
tional negative, and let comparatorit be the total number of sentences that contain a comparator.
The LLM–tailorability index is TailorabilityLLM

it = numericalit
comparatorit+10−9 where a small constant 10−9

avoids division-by-zero. Higher values imply that managers reframe potentially unfavourable
comparisons in linguistically neutral terms that large language models tend to under-weight. I
compute the index separately for the prepared remarks (Presenter Speech = 1) and the Q&A section
(Presenter Speech = 0). The dummy Post ChatGPT equals 1 for calls held on or after 30 November
2022 (the public release date of GPT-3.5/ChatGPT) and 0 otherwise. The sample comprises U.S.
conference calls from 30 November 2020 to 30 November 2024. Standard errors are in parenthe-
ses.

Panel A. Tailorability for LLMs

LLM Tailorability LLM Tailorability

Post ChatGPT=1 -0.035∗∗∗ 0.014

(0.003) (0.015)

Post ChatGPT=1 × Presenter Speech=1 0.006 0.008∗∗

(0.004) (0.004)

CompanyFE NO YES

QYearFE NO YES

Observations 124474 124434

Adjusted R-squared 0.019 0.121

Panel B. Dictionaries Used to Construct the Index

Comparator expressions Directional-negative stems

relative to; compared with; compared to; ver-
sus; vs; in comparison with; in comparison to;
instead of; as opposed to; year over year; quar-
ter over quarter; with respect to; on a year-over-
year basis; against; in contrast to; over the prior
year; over the previous quarter; on a quarterly
basis; on an annual basis; from last year; from
the prior period; from the previous year; from
the same period last year; on a comparable ba-
sis; relative change; change from prior; change
from previous; comparison with last year; com-
parison to last quarter

decreas; declin; drop; fall; deteriorat; worsen;
reduc; shrink; weaken; compress; dip; plung;
tumbl; sink; sunk; slip; lower; diminish; recede;
collaps; decelerat
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Table 4: TRC Coefficient - Validation
This table presents the baseline regression to validate the TRC measure. The ERC Controls are
Size, Loss, Market-to-Book, Leverage, Earnings Persistence, and Market Beta. TRC-specific con-
trols are Distance in days from the Earnings Announcement, Transcript Length, Total Guidance,
and an Indicator of EPS Guidance issued throughout the Quarter. SUT is the residuals from re-
gressing the Brown Tucker textual difference metric on informational events: guidance (total, if
EPS guidance, if range guidance), other filings (readability, sentiment, timing), and macro vari-
ables (industrial and consumer indexes, treasury and bond spreads). The residual are then nor-
malized with Min-Max transformation to ensure scores are between 0 and 1.

(1) (2) (3) (4) (5) (6)

Abs CAR(-1,1) Abs CAR(-1,1) Abs CAR(-1,1) Abs CAR(-1,1) Abs CAR(-1,1) Abs CAR(-1,1)

Abs UE 0.310∗∗∗ 0.186∗∗∗ 0.134∗∗∗ 0.603∗∗∗ 0.397∗∗∗ 0.320∗∗∗

(0.010) (0.010) (0.010) (0.042) (0.041) (0.040)

SUT 0.028∗∗∗ 0.021∗∗∗ 0.018∗∗∗ 0.032∗∗∗ 0.025∗∗∗ 0.021∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Abs UE × SUT -0.790∗∗∗ -0.567∗∗∗ -0.500∗∗∗

(0.111) (0.106) (0.104)

ERC Controls NO YES YES NO YES YES

TRC Controls NO YES YES NO YES YES

FirmFE NO NO YES NO NO YES

QYearFE NO NO YES NO NO YES

Observations 75629 75629 74947 75629 75629 74947

Adjusted R-squared 0.014 0.089 0.149 0.015 0.090 0.150
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Table 5: Tailorability LM
This table presents the results of the Tailorability validation test. The dependent variable captures
the share of negative language that evades the Loughran McDonald tone dictionary. It is con-
structed as TailorabilityLM

it =
unflaggedit

flaggedit+unflaggedit
where, flaggedit = #{tokens ∈ LM dictionary},

and unflaggedit = #{tokens ∈ LM synonyms \ LM dictionary}. The index is separately com-
puted for the presenter speech (Section =1) and the Q&A portion of the call (Section = 0). PostLM
takes value equal to one if the call is held after January 6 2011, the day the paper is published
on the Journal of Finance, and zero otherwise. The sample contains tailorability and pre- post-
indicator for conference calls held on January 6 2009 to January 6 2013. Robust standard errors in
parentheses.

Panel A. Tailorability for LM

Tailorability LM Tailorability LM

Post LM=1 0.018∗∗∗ 0.000

(0.004) (.)

Post LM=1 × Section=1 0.027∗∗∗ 0.027∗∗∗

(0.005) (0.004)

Company FE NO YES

Quarter-Year FE NO YES

Observations 9692 9689

Adjusted R-squared 0.125 0.357

Panel B. Algorithm for Constructing the LM Synonym Set

1. Input Original LM negative lexicon L (2,303 lemmas); WordNet database WN; Harvard–IV negative
lexicon H.

2. WordNet expansion For each word w ∈ L retrieve every synset in WN (noun, verb, adjective, ad-
verb) and collect the lemmatised lemmas ℓ.

3. Polarity screen Keep ℓ only if ℓ /∈ L and ℓ ∈ H, ensuring the candidate synonym carries negative
sentiment.

4. Inflectional closure For every retained lemma generate all inflected forms using lemminflect.
5. Deduplication Remove duplicates and any token already present in L.
6. Output Extended synonym set S with |S| = 1,438 additional negative tokens; this is the set

LM synonyms used in the tailorability measure.
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Table 6: ChatGPT Event Study
This table estimates equation (4.2) around the introduction of ChatGPT-3 class models on 30
November 2022. The dependent variable is ACAR(−1, 1), the absolute cumulative abnormal
stock return from one trading day before to one trading day after the earnings call (or the first
trading day thereafter if the call occurs after hours). Abs UE is the absolute earnings surprise,
HSUT is an indicator equal to 1 when textual surprise (SUT) is above the median for the year, and
Post ChatGPT equals 1 for calls on or after 30 November 2022. Column (1) contains no additional
controls; Column (2) adds the controls: Size, Loss, Market-to-Book, Earnings Persistence, and
Market Beta are classical controls to better estimate the ERC coefficient, while Transcript Length,
Total Guidance for the quarter, an Indicator whether EPS Guidance issued throughout the Quar-
ter, Distance in days from the Earnings Announcement, Number of 8Ks issued throughout the
quarter, and Distance in Days from the most recent 8K issuance are TRC-specific and discussed in
4. Columns (3) and (4) add Industry and Firm fixed effects, respectively. Robust standard errors
are in parentheses.

(1) (2) (3) (4)

ACAR(-1,1) ACAR(-1,1) ACAR(-1,1) ACAR(-1,1)

Abs UE 0.342∗∗∗ 0.195∗∗∗ 0.181∗∗∗ 0.159∗∗∗

(0.049) (0.045) (0.045) (0.049)

HSUT 0.006∗∗∗ 0.003∗∗ 0.003∗∗∗ 0.002

(0.001) (0.001) (0.001) (0.001)

Abs UE × HSUT -0.059 -0.040 -0.047 -0.032

(0.052) (0.051) (0.051) (0.056)

Post GPT=1 0.006∗∗∗ 0.007∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.001)

Post GPT=1 × Abs UE 0.092 0.042 0.052 0.067

(0.067) (0.062) (0.061) (0.066)

Post GPT=1 × HSUT 0.003∗ 0.002 0.001 0.001

(0.002) (0.002) (0.002) (0.002)

Post GPT=1 × Abs UE × HSUT -0.209∗∗∗ -0.137∗ -0.139∗ -0.144∗

(0.072) (0.072) (0.071) (0.076)

Controls NO YES YES YES

IndustryFE NO NO YES NO

FirmFE NO NO NO YES

Observations 31865 19339 19046 19197

Adjusted R-squared 0.020 0.107 0.138 0.207
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Table 7: ChatGPT Event Study: Presenter Speech vs Q&A
This table reports the estimates of equation 5.1 for the sample period 30 November 2020 to 30
November 2024. The dependent variable is ACAR(−1, 1), the absolute cumulative abnormal
stock return from one trading day before to one trading day after the earnings call. Abs UE is
the absolute earnings surprise; HSUT equals 1 when textual surprise (SUT) is above the median
textual surprise; Section equals 1 for prepared remarks and 0 for analyst questions; and Post Chat-
GPT equals 1 for calls on or after 30 November 2022. Column (1) contains no additional controls;
Column (2) adds the controls: Size, Loss, Market-to-Book, Earnings Persistence, and Market Beta
are classical controls to better estimate the ERC coefficient, while Transcript Length, Total Guid-
ance for the quarter, an Indicator whether EPS Guidance issued throughout the Quarter, Distance
in days from the Earnings Announcement, Number of 8Ks issued throughout the quarter, and
Distance in Days from the most recent 8K issuance are TRC-specific and discussed in 4. Column
(3) adds Industry and Quarter-Year fixed effects. Robust standard errors are in parentheses.

(1) (2) (3)

ACAR(-1,1) ACAR(-1,1) ACAR(-1,1)

DAbs UE 0.004∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000)

HSUT 0.005∗∗ 0.004∗ 0.007∗∗∗

(0.002) (0.002) (0.002)

DAbs UE × HSUT -0.000 -0.001 -0.001∗∗∗

(0.000) (0.000) (0.000)

Section=1 × Post ChatGPT=1 -0.004 -0.004 -0.004

(0.004) (0.003) (0.003)

Section=1 × Post ChatGPT=1 × DAbs UE 0.001 0.001 0.001

(0.001) (0.001) (0.001)

Section=1 × Post ChatGPT=1 × HSUT 0.005 0.007 0.008∗

(0.004) (0.005) (0.005)

Section=1 × Post ChatGPT=1 × DAbs UE × HSUT -0.001 -0.001 -0.001∗

(0.001) (0.001) (0.001)

Controls NO YES YES

QYearFE NO NO YES

IndustryFE NO NO YES

Observations 63730 38678 38092

Adjusted R-squared 0.040 0.113 0.159
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Table 8: LM Event Study
This table estimates equation (4.2) around the publication of Loughran and McDonald (2011)
paper on 6 January 2011. The dependent variable is ACAR(−1, 1), the absolute cumulative ab-
normal stock return from one trading day before to one trading day after the earnings call (or the
first trading day thereafter if the call occurs after hours). Abs UE is the absolute earnings surprise,
HSUT is an indicator equal to 1 when textual surprise (SUT) is above the median for the year, and
Post LM equals 1 for calls on or after 6 January 2011. The sample includes transcripts of calls held
between ±2 years of the publication date. Column (1) contains no additional controls; Column
(2) adds the controls: Size, Loss, Market-to-Book, Earnings Persistence, and Market Beta are clas-
sical controls to better estimate the ERC coefficient, while Transcript Length, Total Guidance for
the quarter, an Indicator whether EPS Guidance issued throughout the Quarter, Distance in days
from the Earnings Announcement, Number of 8Ks issued throughout the quarter, and Distance
in Days from the most recent 8K issuance are TRC-specific and discussed in 4. Columns (3) and
(4) add Industry and Firm fixed effects, respectively. Robust standard errors are in parentheses.

(1) (2) (3) (4)

ACAR(-1,1) ACAR(-1,1) ACAR(-1,1) ACAR(-1,1)

Abs UE 0.857∗∗∗ 0.649∗∗∗ 0.623∗∗∗ 0.623∗∗∗

(0.066) (0.063) (0.063) (0.063)

HSUT 0.003∗∗ 0.001 0.002 0.002

(0.001) (0.001) (0.001) (0.001)

Abs UE × HSUT -0.660∗∗∗ -0.504∗∗∗ -0.489∗∗∗ -0.489∗∗∗

(0.068) (0.070) (0.069) (0.069)

Post LM=1 -0.006∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.004∗∗∗

(0.001) (0.001) (0.001) (0.001)

Post LM=1 × Abs UE -0.272∗∗∗ -0.256∗∗∗ -0.243∗∗∗ -0.243∗∗∗

(0.089) (0.085) (0.084) (0.084)

Post LM=1 × HSUT -0.000 0.001 0.002 0.002

(0.001) (0.001) (0.001) (0.001)

Post LM=1 × Abs UE × HSUT 0.294∗∗∗ 0.261∗∗∗ 0.244∗∗∗ 0.244∗∗∗

(0.094) (0.095) (0.094) (0.094)

Controls NO YES YES YES

IndustryFE NO NO YES NO

CompanyFE NO NO NO YES

Observations 24651 19869 19690 19690

Adjusted R-squared 0.022 0.098 0.121 0.121
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Table 9: Informativeness dynamics for positive and negative news
This table estimates equation (5.2) around the introduction of ChatGPT-3 class models on 30
November 2022. The dependent variable is CAR(−1, 1), the cumulative abnormal stock return
from one trading day before to one trading day after the earnings call (or the first trading day
thereafter if the call occurs after hours). UE is the earnings surprise, SUT is the textual surprise,
and Post ChatGPT equals 1 for calls on or after 30 November 2022. Columns (1)-(3) report the result
for equation (5.2) on the subsample of negative earnings surprises (UE < 0); while columns (4)-(6)
estimate the same specification on non-negative earnings surprises (UE ≥ 0). Columns (1) and
(4) contains no additional controls; columns (2) and (5) adds the controls: Size, Market-to-Book,
Earnings Persistence, and Market Beta are classical controls to better estimate the ERC coefficient,
while Transcript Length, Total Guidance for the quarter, an Indicator whether EPS Guidance is-
sued throughout the Quarter, Distance in days from the Earnings Announcement, Number of 8Ks
issued throughout the quarter, and Distance in Days from the most recent 8K issuance are TRC-
specific and discussed in 4. Columns (3) and (6) add Industry fixed effects, respectively. Robust
standard errors are in parentheses.

(1) (2) (3) (4) (5) (6)

CAR(-1,1) CAR(-1,1) CAR(-1,1) CAR(-1,1) CAR(-1,1) CAR(-1,1)

UE 0.247 0.270 0.548 0.083 0.014 0.069

(0.454) (0.455) (0.457) (0.675) (0.675) (0.679)

SUT -0.009 -0.009 -0.034 -0.039∗∗ -0.040∗∗ -0.040∗∗

(0.031) (0.031) (0.032) (0.018) (0.018) (0.019)

UE × SUT -0.138 -0.203 -0.811 1.202 1.308 1.078

(1.065) (1.065) (1.069) (2.010) (2.012) (2.021)

Post ChatGPT=1 × UE -1.048∗ -1.103∗ -1.369∗∗ 2.120∗∗ 2.083∗∗ 1.995∗∗

(0.567) (0.567) (0.570) (0.955) (0.957) (0.962)

Post ChatGPT=1 × SUT -0.030 -0.022 -0.013 0.028 0.031 0.034

(0.044) (0.044) (0.045) (0.025) (0.025) (0.025)

Post ChatGPT=1 × UE × SUT 2.705∗ 2.772∗∗ 3.484∗∗ -5.544∗∗ -5.592∗∗ -5.388∗∗

(1.403) (1.403) (1.411) (2.621) (2.624) (2.638)

Controls NO YES YES NO YES NO

IndustryFE NO NO YES NO NO NO

Observations 2367 2367 2333 7526 7526 7448

Adjusted R-squared 0.006 0.013 0.034 0.005 0.007 0.010

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figures

Figure 1: ChatGPT Event Study: Presenter Speech vs Q&A - Dynamics
The figure presents simultaneously estimated trends in textual response coefficients of equa-
tion 5.1 for the sample period 01 January 2020 to 31 December 2024. The dependent variable
is ACAR(−1, 1), the absolute cumulative abnormal stock return from one trading day before to
one trading day after the earnings call. Abs UE is the absolute earnings surprise; HSUT equals
1 when textual surprise (SUT) is above the median textual surprise; Section equals 1 for prepared
remarks and 0 for analyst questions; Abs UE, HSUT, and Section are interacted with a saturated
model of year-indicators for 2020, 2021, 2023, 2024, so that the baseline is 2022, the year before
the introduction of ChatGPT. Additional controls are Size, Loss, Market-to-Book, Earnings Persis-
tence, and Market Beta, Transcript Length, Total Guidance for the quarter, an Indicator whether
EPS Guidance issued throughout the Quarter, Distance in days from the Earnings Announcement,
Number of 8Ks issued throughout the quarter, and Distance in Days from the most recent 8K is-
suance. Fixed effects for Industry are also included. Robust standard errors are in parentheses.

Panel A: Coefficient HSUT

Panel B: Coefficient of the interaction DAbs UE × HSUT

A Variables Definition
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Table 10: Appendix A: Variable Definitions

Variable Name Description Source

Text Similarity & Transcript Measures. Each metric in evaluated on five transcript subsets: entire call, presenter speech, Q&A, Q, A)

Textual Dissimilarity Base dissimilarity is computed as 1 minus the cosine similarity between the

vectorized current transcript’s processed text and the vectorized document re-

sulting from concatenating the prior four transcripts of the same firm. Textual

vectors are computed using TF-IDF vectorization. Textual Dissimilarity is the

residual of the base dissimilarity regressed on the five-degree polynomial of the

transcript length.

Capital IQ,

Brown and

Tucker (2011)

SUT The residual from regressing Textual Dissimilarity on a set of characteristics of

the information distribution process. Management guidance in previous 90 days:

both number of estimates, which fraction is range rather than point guidance,

and which fraction is EPS guidance. 8-K issuance: distance in days between the

most recent 8-K and the conference call, the number of 8-K issued in the previ-

ous 90 days, readability (Flesch Kincaid grade level) and sentiment (frequency

of LM negative words) of the most recent filing. Macro variables: industrial prod-

uct index (IP), consumer price index, crude oil future, three month treasury,

spread between 10 years and 3 month treasury bill, spread between BAA and

AAA. The residual is them passed through the min-max transformation to get

values between 0 and 1.

Capital IQ,

Brown and

Tucker (2011)

HSUT Indicator: 1 if SUT > median(SUT), 0 otherwise. Computed

Length Logarithm of character count of the processed transcript text in each subset,

after tokenization and stemming. Proxy for transcript length by section.

Computed
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Variable Name Description Source

Earnings Forecasts & Guidance

Abs UE Absolute value of the unexpected earnings (UE) . UE are computed as in Gipper,

Leuz, and Maffett (2020) as the actual EPS (unadjusted, quarterly) as reported

by IBES minus the median estimate divided by the stock price two days before

the earnings announcement.

IBES, CRSP

LOSS Indicator: 1 if any UE < 0 , 0 otherwise. IBES

MEDEST Median analyst EPS forecast. For each analysts, retain the closest forecast within

90 days before earnings announcement.

IBES

STDEV Standard deviation of analyst EPS forecasts in window; proxy for uncer-

tainty/dispersion.

IBES

MEDESTG Analyst median estimate, but filtering to only those forecasts issued after the

latest management guidance within prior 90 days (if any).

IBES, TR IBES

Guidance

GUIDANCE Indicator: 1 if any prior management guidance exists in the 90-day window, 0

otherwise.

IBES, TR IBES

Guidance

LATEST GUID Timestamp of most recent management earnings guidance prior to the an-

nouncement, within 90 days.

TR IBES

Guidance

TOT GUIDANCE number of management guidance datapoints in the 90-day window, 0 other-

wise.

IBES, TR IBES

Guidance

EPS GUIDANCE Indicator: 1 if any prior management guidance is EPS guidance, 0 otherwise. IBES, TR IBES

Guidance
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Variable Name Description Source

NUM ANALYSTS Number of unique analysts issuing forecasts 3 to 360 days before earnings an-

nouncement.

IBES

Market-Based Variables (Event Windows)

CAR(−1, 1)event Cumulative abnormal return (CAR), sum of abnormal returns from day -1 to

+1 surrounding the conference call (cc) or earnings announcement (ea). Bench-

mark: S&P 500 daily returns.

CRSP +

S&P500

AbnVOL(−1, 3)event Abnormal trading volume, sum over days -1, 0, +1, +2, +3, normalized by pre-

vious 41-day baseline; centered at conference call date (cc) and earnings an-

nouncement date (ea).

CRSP

P(−2)event Stock price two trading days prior to conference call or earnings announcement. CRSP

(WRDS)

iVOLevent Idiosyncratic volatility, estimated two trading days before event using rolling

one-year Fama-French regression.

CRSP + FF

Factors

BETAevent Beta with respect to market excess return, estimated over rolling one-year re-

gressions up to the event date.

CRSP + FF

Factors

timelinessevent Timeliness/price efficiency measured as average negative absolute log-price

change versus last pre-event price, over days -82 to -2. Higher values indicate

more informative price discovery.

CRSP

Firm Characteristics
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Variable Name Description Source

SIZE log(Market Value), measured as the natural logarithm of the market value at

fiscal year-end prior to the event. Proxy for firm size.

Compustat

MTB Market-to-book ratio, defined as market capitalization divided by book equity

at the fiscal year-end prior to the event.

Compustat

LEVERAGE Financial leverage ratio, computed as total debt (long-term plus short-term) di-

vided by total assets, at fiscal year-end prior to the event.

Compustat

EARNINGS PERSIS-

TENCE

Earnings persistence, measured as the coefficient on lagged earnings per share

excluding extraordinary items (epspx) from a firm-level regression of current

epspx on past epspx. Higher values indicate greater earnings persistence.

Compustat

DIST EC EA Calendar days between the earnings conference call and earnings announce-

ment.
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B The Model

This appendix presents a one-period communication game between a sender and a receiver. Com-

munication is noisy: the report submitted by the sender does not necessarily coincide with the

message processed by the receiver. Mismatches arise from (i) manual processing frictions when

no technology is used and (ii) algorithmic misclassification when technology is employed.

The two players are a manager (Manager, M, she/her) and an investor (Investor, I, he/him). The

manager, who holds proprietary information, drafts a report r and transmits it to the investor;

the investor reads the report and set up the price for the manager’s firm. While M wishes to

maximize investment in her firm, I wants to set up a price that matches the fundamental value of

the business.

The investor relies on an algorithm to parse the report. The algorithm is imperfect and may pro-

duce an incorrect signal. The manager does not know whether the algorithm will classify her

report correctly. She can, however, pay a private cost to learn how the algorithm operates; doing

so enables her to tailor the report so that she can choice precisely r. If she does not, she will report

truthfully (i) and the report observed by the investor will be r = i × j. The cost of acquiring this

knowledge is private information to M; the investor observes only its distribution.

B.1 Timing

1. Nature. Nature draws a state x = (i, j, c) ∈ X = {(i, j, c) : (i, j) ∈ {−1, 1}2, c ∼ U[0, 2]}:

• i ∈ {−1, 1} represents fundamental news.

• j ∈ {−1, 1} captures limited processing capacity (or algorithmic inaccuracy). When M

truthfully reports i, the message observed by I is m = i × j. Therefore if j = 1, the report

is processed correctly, and if j = −1, it is misinterpreted. Although it may seem unnatural

to assume the processing outcome j is determined before the state is observed by M, this

timing is without loss of generality. In fact, since M never observes j, the setup is equiv-

alent to a more natural interpretation where j is realized only after the manager discloses

the report.

• c ∼ U[0, 2] is the private cost of learning the algorithm. The maximum cost is assumed

to be high enough to deter managers with bad news and the highest possible costs from
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engaging in algorithmic tailoring.

The prior µ satisfies

µ(i = 1) = µ(i = −1) = 1
2 , µ(j = i | i) = 1 − κ, µ(j ̸= i | i) = κ, κ ∈ [0, 1/2]

and c is independent of (i, j).

2. Manager Information. The manager observes (i, c) but not j. Although j is drawn before she

moves, the timing is inconsequential because j remains unobservable to her.

3. Tailoring decision. The manager decides whether to learn the algorithm at cost c. Let T = 1 if

she tailors and T = 0 otherwise.

4. Report. If T = 0, the manager write a truthful, but tech-unaware report: r = i × j which is

subject processing noise, and therefore can be interpreted correctly or not depending on j. If

instead, T = 1, a tech-savvy manager can write a report that will be interpreted as she prefers:

r ∈ {−1, 1}.

5. Pricing. The investor observes the message m and chooses a price p ∈ [−1, 1]. Payoffs are

UM = p, U I = −(p − i)2.

B.2 Equilibrium

The solution concept is perfect Bayesian equilibrium (PBE) in pure strategies.

Proposition B.2.1. There exists a unique PBE in pure strategies:

T(i, c) = 1c≤c∗i , r∗(i, c ≤ c∗i ) = 1,

r∗(i, c > c∗i ) = i × j, p(r)∗ = E[i|r], for i ∈ {−1, 1}

Proof. Note that message depends on the second entry of the report, and such entry can differ

from the state only when the technology is acquired. So the firm’s price depend on the fraction of

manager’ types that want to acquire the technology.

Since, the value of the firm with good news is higher than the firm with bad news, I start conjec-

turing that technologically savvy managers will write a report r = 1. Tech-naive managers will
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stick with their truthful report that κ times gets misclassified.

If i = 1 :

E[p|T = 0] = (1 − κ)p(1) + κp(−1)

E[p|T = 1] = p(1)− c

=⇒ T = 1 if: c < κ [p(1)− p(−1)] = c1

If i = −1 :

E[p|T = 0] = κp(1) + (1 − κ)p(−1)

E[p|T = 1] = p(1)− c

=⇒ T = 1 if: c < (1 − κ) [p(1)− p(−1)] = c−1

Note that for κ < 1
2 , the threshold cost for the manager’s type i = 1 is higher than for types with

i = −1. Since truthful reporting yields lower payoffs in expectation for the bad news holders, the

incentives to acquire the technological knowledge are higher.

Since the investor cannot observe c, he will work in expectation. The fraction of managers, holding

good (bad) news, willing to invest in learning how to tailor are F(c1) = c1/2 (F(c1) = c−1/2).

Then, Investor prices in a Bayesian fashion:

p(1) =
[F(c1) + (1 − κ)(1 − F(c1))] + v(−1) [F(c−1) + κ(1 − F(c−1))]

F(c1) + (1 − κ)(1 − F(c1)) + F(c−1) + κ(1 − F(c−1))

=
2 − 4κ + [p(1)− p(−1)] (2κ − 1)
2 + [p(1)− p(−1)] (2κ2 − κ + 1)

(B.1)

p(−1) =
κ(1 − F(c1)) + v(−1)(1 − κ)(1 − F(c−1))

κ(1 − F(c1)) + (1 − κ)(1 − F(c−1))

= − 2 − 4κ + [p(1)− p(−1)] (2κ − 1)
2 − [p(1)− p(−1)] (2κ2 − 2κ + 1)

(B.2)
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Then,

p(1)− p(−1) =
[p(1)− p(−1)](2k − 1) + 2 − 4κ

4 − [p(1)− p(−1)]2(2κ2 − 2κ + 1)

Call x = p(1)− p(−1) : x =
x(2k − 1) + 2 − 4κ

4 − x2(2κ2 − 2κ + 1)2

I find p(1)− p(−1) = x(κ) as the solution of a fixed point problem.

A(x(k), k) = −x(k)3(2κ2 − 2κ + 1)2 − x(k)(8 − 8κ) + (8 − 16κ) (B.3)

Note that p(1), p(−1) being Bayesian prices can take values at most in [−1, 1], and therefore their

distance cannot be any greater than 2. Also, without tailoring the distance of p(1)− p(−1) ≥ 0. It

cannot be sustained an equilibrium where p(1) < p(−1), if that was the case, all bad type would

be able to send m = −1 at a cheaper costs that the respective good type. But a pool of mostly bad

types would result in lower Bayesian prices than the pool of remaining types (mostly good types):

(a − 1) < p(1). Then p(1)− p(−1) ≥ 0.

In equilibrium A(x(k), k) = 0. As is standard in the literature, I prove that ∃!x(k) : A(x(k), k) = 0

inspecting at the extreme values that x can take, x = 0, x = 2, and show monotonicity. Since

A(x, k) is polynomial of degree three, it is continuous and twice differentiable: for the intermediate

value theorem, exists a unique x(k) such that A(x(k), k) = 0.

In fact, for x ∈
(
0, 1

2

)
:

A(0, κ) = 8 − 16κ > 0

A(2, κ) = −8(2κ2 − 2κ + 1)2 − 8 < 0

∂A(x, k)
∂x

= −3x2(2κ2 − 2κ + 1)2 − (8 − 8κ) < 0

Then, since A(x, k) is continuous on the interval, for the intermediate value theorem: A(0, κ) >

0, A(2, κ) < 0, ∂A(x,k)
∂x < 0 =⇒ ∃!x(k) : A(x(k), k) = 0.

Since x(k) is unique fo a given κ, there exists a unique pair of valid thresholds c∗1(κ), c∗−1(κ)

and prices a∗(1; κ), and a∗(−1; κ).
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B.2.1 Uniqueness

To complete the proof of uniqueness, it’s still left to show that p(−1) > p(1) cannot be sustained

in equilibrium.

First, the thresholds for c1 and c−1 become:

c1 = (1 − κ)[p(−1)− p(1)]

c1 = κ[p(−1)− p(1)]

And therefore Bayesian prices are:

p(1) =
(1 − κ)(1 − F(c1))− κ(1 − F(c−1))

(1 − κ)(1 − F(c1)) + κ(1 − F(c−1))

=
2(1 − 2κ) + κ(c1 + c−1)− c1

2 + κ(c1 − c−1)− c1
(B.4)

p(−1) =
F(c1) + κ(1 − F(c1))− (1 − κ)(1 − F(c−1)) + F(c−1)

F(c1) + κ(1 − F(c1)) + (1 − κ)(1 − F(c−1))− F(c−1)

= −2(1 − 2κ) + κ(c1 + c−1)− c1

2 − κ(c1 − c−1) + c1
(B.5)

=⇒ p(−1)− p(1) = −4[2(1 − 2κ) + κ(c1 + c−1)− c1]

4 − [κ(c1 − c−1)− c1]2
(B.6)

= −4[2(1 − 2κ) + κx − (1 − κ)x]
4 − [κ(1 − 2κ)x − (1 − κ)x]2

(B.7)

Call x = p(−1)− p(1) > 0 :

B(x, κ) = −x3(2κ2 − 2κ + 1)2 + 8κx + 8(1 − 2κ)

When assuming p(1) > p(−1), A(x, κ) satisfied the intermediate value theorem. For B(x, κ)

instead I get:

B(0, κ) = 8(1 − 2κ) > 0 for κ ∈
(

0,
1
2

)
And monotonically decreasing in x:

dB(x, κ)

dx
= −3x2(2κ2 − 2κ + 1)2 + 8κ
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From B(x, κ) = 0 : x2 =
8(1 − 2κ) + 8κx
x(2κ2 − 2κ + 1)2

=⇒ dB(x, κ)

dx
= −24(1 − 2κ)− 16κx

x
< 0

Finally, for the largest possible value of x = 2 :

B(2, κ) = −8(2κ2 − 2κ + 1)2 + 8

= 8[1 − (2κ2 − 2κ + 1)2] > 0 for κ ∈
(

0,
1
2

)
Since 2κ(2κ − 1) < 0 for κ ∈

(
0,

1
2

)

Then, B(0, κ) > B(2, κ) > 0, and dB(x,κ
dx < 0 implies that cannot exist x∗ such that B(x∗, κ) = 0,

which concludes the proof.

B.2.2 Comparative statics

Note that ∂x(κ)
∂κ < 0. The implicit function theorem shows that:

∂A
∂κ

= 0

⇐⇒ − 3x(κ)2 ∂x(κ)
∂κ

(2κ2 − 2κ + 1)2 − ∂x(κ)
∂κ

(8 − 8κ)− 2x3(2κ2 − 2κ + 1)(4κ − 2) + 8x(κ)− 16 = 0

⇐⇒ ∂x(κ)
∂κ

=
(8x(κ)− 16)− 2x(κ)3(2κ2 − 2κ + 1)(4κ − 2)

3x(κ)2(2κ2 − 2κ + 1)2 + (8 − 8κ)
(B.8)

The denominator is always positive, so the sign of the derivative is determined by the nominator.

Note that I can rewrite A(x(κ), κ) = 0 as:

x(κ)3(2κ2 − 2κ + 1) =
(8 − 16κ)− x(κ)(8 − 8κ)

(2κ2 − 2κ + 1)
(B.9)

I plug B.9 into B.8, and get that

∂x(κ)
∂κ

> 0 ⇐⇒ (8x(κ)− 16)(2κ2 − 2κ + 1)− (8κ − 4)[8 − 16κ − x(κ)(8 − 8]κ) > 0

⇐⇒ x(κ) >
16(2κ2 − 2κ + 1) + (8κ − 4)(8 − 16κ)

8(2κ2 − 2κ + 1) + (8κ − 4)(8 − 8κ)
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⇐⇒ x >
16
8

−6κ2 + 6κ − 1
−6κ2 + 10κ − 3

= 2h(κ)

Now, recall that x ∈ [0, 2], then if h(κ) > 1, I have ∂x(κ)
∂κ < 0.

−6κ2 + 6κ − 1
−6κ2 + 10κ − 3

> 1 ⇐⇒ κ < 1/2

Which is always satisfied on κ ∈ (0, 1/2).

Finally, I can move to the comparative statics for of p(1) and p(−1).

∂p(−1)
κ

=
[4 − ∂x(κ)

∂κ (2κ − 1)− 2x(κ)][2 − x(κ)(2κ2 − 2κ + 1)] + [−2 + 4κ − x(κ)(2κ − 1)][ ∂x(κ)
∂κ (2κ − 1) + x(κ)(4κ − 2)]

[2 − x(κ)(2κ2 − 2κ + 1)]2

∝
∂x(κ)

∂κ︸ ︷︷ ︸
<0

[2κ2 − 3κ + 1]︸ ︷︷ ︸
<0

κ + x(κ)︸︷︷︸
>0

[2κ2 − 2κ − 1]︸ ︷︷ ︸
<0

κ + x(κ)2︸ ︷︷ ︸
>0

[−κ2 − 3κ + 1]︸ ︷︷ ︸
bimodal

κ + 8

Yet, x(κ) takes at most the value of 2, and 2[2κ2 − 2κ + 1] + 4[−κ2 − 3κ + 1]κ + 8 = −16κ2 − 3κ +

8 > 0 on κ ∈ (0, 1/2)

Therefore, ∂p(−1)
κ > 0.

Simulation shows the unimodal behavior of ∂p(1)
κ .

0.40 0.30 0.20 0.10 0.00
κ
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0.10
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0.20

0.25

0.30

p(1)

Analytically, it can be shown that the relation is positive as κ → 0:

∂p(1)
∂κ

=

[
− 4 + x′(κ)(2κ − 1) + 2x(κ)

][
2 + x(κ)(2κ2 − 2κ + 1)

]
−

[
2 − 4κ + x(κ)(2κ − 1)

][
x′(κ)(2κ − 1) + x(κ)(4κ − 2)

][
2 + x(κ)(2κ2 − 2κ + 1)

]2

∝ 4
[
(2κ3 − 3κ2 + 3κ − 1) x′(κ) + (2κ2 − 2κ + 1) x(κ) + κ(1 − κ) x(κ)2 − 2

]
.
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and lim
κ→0

∂p(1)
κ

= 3 > 0

Loss of information is reflected by the expected payoff of the investor:

In f ormation Loss =− E[p − i]2

=− [p(1)− 1]2 ∗ (1 − κ + κ ∗ c1/2)− [p(−1)− 1])2 ∗ (κ ∗ c1/2)

− [p(−1) + 1]2 ∗ ((1 − c−1/2) ∗ (1 − k))− [p(1) + 1]2 ∗ ((1 − c−1/2) ∗ k + c−1/2)

0.40 0.30 0.20 0.10 0.00
κ

-1.50
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-1.40

-1.35

Information Loss

Finally, conditional on seeing a report r = 1, the information loss is decreasing and the conditional

on seeing r = −1 the information loss is decreasing.
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